Session 6:  The Driverless AI

A report by McKinsey says that based on 2018 job market predictions: “The United States alone faces a shortage of 140,000 to 190,000 people with analytical expertise and 1.5 million managers and analysts with the skills to understand and make decisions based on the analysis of big data.” H2O’s Driverless AI addresses the growing need to automate processes for better efficiency and turn-around-times, by democratizing data science and making it accessible to non-experts, while simultaneously increasing the efficiency of expert data scientists.

Driverless AI is designed to take a raw dataset and run it through a proprietary algorithm that automates the data exploration/feature engineering process, which typically takes ~80% of a data scientist’s time. It then auto-tunes model parameters and provides the user with the model that yields the best results. Therefore, experienced data scientists are spending far less time engineering new features and can focus on drawing actionable insights from the models Driverless AI builds. Lastly, the user can see visualizations generated by the Machine Learning Interpretability (MLI) component of Driverless AI to clarify the model results and the effect of changing variables’ values. The MLI feature eliminates the black box nature of machine learning models and provides clear and straightforward results from a model as well as how changing features will alter results.

The automatic nature of Driverless AI leads to increased accuracy. AutoDL engineers new features mechanically, and AutoML finds the right algorithms and tunes them to create the perfect ensemble of models. You can think of it as a Kaggle Grandmaster in a box. Driverless AI streamlines the machine learning workflow for inexperienced and expert users alike. 

Learn more about the revolution, here.




Questions?

  • Ready to learn more? Reach out to us at sales@h2o.ai for a demo!